

Exercise 1. Let $f \in X'$. Since $\{x_n\}_{n \in \mathbb{N}}$ converges weakly to x_∞ , we have $f(x_n) \xrightarrow{n \rightarrow \infty} f(x_\infty)$. Therefore, for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, we have $|f(x_n) - f(x_\infty)| < \varepsilon$. Therefore, we get by linearity for all $m \geq N$

$$\left| f\left(\frac{1}{m} \sum_{i=1}^m x_i\right) - f(x_\infty) \right| \leq \frac{1}{m} \sum_{i=1}^m |f(x_i) - f(x_\infty)| \leq \frac{1}{m} \sum_{i=1}^N \|f\|_{X'} (\|x_n\|_X + \|x_\infty\|_X) + \frac{m-N}{m} \varepsilon.$$

Since $\{\|x_n\|_X\}_{n \in \mathbb{N}}$ is bounded (as $\{x_n\}_{n \in \mathbb{N}}$ converges weakly), we deduce that

$$\limsup_{m \rightarrow \infty} \left| f\left(\frac{1}{m} \sum_{i=1}^m x_i\right) - f(x_\infty) \right| \leq \varepsilon.$$

As the result is true for all $\varepsilon > 0$, the weak convergence follows.

Exercise 2. We have for all $1 \leq p < \infty$

$$\int_0^{2\pi} |\sin(nx)|^p dx = \sum_{k=0}^{n-1} \int_{\frac{2k\pi}{n}}^{\frac{2\pi(k+1)}{n}} |\sin(nx)|^p dx = \frac{1}{n} \sum_{k=0}^{n-1} \int_{2\pi k}^{2\pi(k+1)} |\sin(y)|^p dy = \int_0^{2\pi} |\sin(y)|^p dy > 0$$

by 2π -periodicity. Therefore, the sequence never converges to 0 strongly. The weak converge follows from the Riemann-Lebesgue theorem. Assuming without loss of generality that $\varphi \in C_c^\infty(]0, 2\pi[)$, we get for all $n \geq 1$

$$\begin{aligned} \int_0^{2\pi} \varphi(x) \sin(nx) dx &= \left[-\varphi(x) \frac{\cos(nx)}{n} \right]_0^{2\pi} + \frac{1}{n} \int_0^{2\pi} \varphi'(x) \cos(nx) dx \\ &= \frac{1}{n} \int_0^{2\pi} \varphi'(x) \cos(nx) dx. \end{aligned}$$

Therefore, we get

$$\left| \int_0^{2\pi} \varphi(x) \sin(nx) dx \right| \leq \frac{1}{n} \int_0^{2\pi} |\varphi'(x)| dx \xrightarrow{n \rightarrow \infty} 0.$$

The general case follows by density of $C_c^\infty(]0, 2\pi[)$ in $L^p(]0, 2\pi[)$ for $1 \leq p < \infty$.

Exercise 3. 1. Let $\varphi \in L^\infty(\Omega)$. We have

$$\int_\Omega (u_n v_n - u_\infty v_\infty) \varphi dx = \int_\Omega u_n (v_n - v_\infty) \varphi dx + \int_\Omega (u_n - u_\infty) v_\infty \varphi dx.$$

As $u_n \xrightarrow{n \rightarrow \infty} u_\infty$, the sequence $\{\|u_n\|_{L^p(\Omega)}\}_{n \in \mathbb{N}} \subset \mathbb{R}_+$ is bounded, i.e., there exists $C < \infty$ such that $\|u_n\|_{L^p(\Omega)} \leq C$ for all $n \in \mathbb{N}$. Therefore, Hölder's inequality implies that

$$\left| \int_\Omega u_n (v_n - v_\infty) \varphi dx \right| \leq \|\varphi\|_{L^\infty(\Omega)} \|u_n\|_{L^p(\Omega)} \|v_n - v_\infty\|_{L^{p'}(\Omega)} \leq C \|\varphi\|_{L^\infty(\Omega)} \|v_n - v_\infty\|_{L^{p'}(\Omega)} \xrightarrow{n \rightarrow \infty} 0.$$

Since $u_n - u_\infty \xrightarrow{n \rightarrow \infty} 0$, we deduce as $v_\infty \varphi \in L^{p'}(\Omega)$ that

$$\lim_{n \rightarrow \infty} \int_\Omega (u_n - u_\infty) v_\infty \varphi dx = 0$$

and the proof is complete. For the counter-example, take $u_n(x) = v_n(x) = \sin(nx)$ and use the previous exercise (or the Riemann-Lebesgue lemma).

2. We have

$$\int_{\Omega} |u_n - u_{\infty}|^2 dx = \int_{\Omega} u_n^2 dx - 2 \int_{\Omega} u_n u_{\infty} dx + \int_{\Omega} u_{\infty}^2 dx.$$

By assumption, we have

$$\int_{\Omega} u_n^2 dx \xrightarrow{n \rightarrow \infty} \int_{\Omega} u^2 dx.$$

On the other hand, we get by the weak convergence

$$\int_{\Omega} u_n u_{\infty} dx \xrightarrow{n \rightarrow \infty} \int_{\Omega} u^2 dx$$

and the proof is complete.

Exercise 4. 1. Thanks to Banach-Alaoglu-Bourbaki theorem, there exists $\bar{f} \in L^p(\Omega)$ such that $f_n \xrightarrow{n \rightarrow \infty} \bar{f}$ weakly. Then, since both limits coincide, we deduce that $f = \bar{f}$ and the proof is complete.
2. By Egorov's theorem, for all $\varepsilon > 0$, there exists $A \subset \Omega$ such that $|A| < \varepsilon$ and $f_n \xrightarrow{n \rightarrow \infty} f$ uniformly in $\Omega \setminus A$. Write

$$\begin{aligned} \int_{\Omega} |f_n - f|^q dx &= \int_{\Omega \setminus A} |f_n - f|^q dx + \int_A |f_n - f|^q dx \\ &\leq \|f_n - f\|_{L^{\infty}(\Omega \setminus A)}^q |\Omega| + \|f_n - f\|_{L^p(\Omega)}^q |A|^{1-\frac{q}{p}} \\ &\leq \|f_n - f\|_{L^{\infty}(\Omega \setminus A)}^q |\Omega| + C^q \varepsilon^{1-\frac{q}{p}}, \end{aligned}$$

where we used that $\{\|f_n\|_{L^p(\Omega)}\}_{n \in \mathbb{N}}$ is bounded due to the weak convergence.

Remarque 1. One can also proceed by truncating the function.

Exercise 5. 1. By homogeneity, it suffices to show that

$$\sup_{-1 \leq t \leq 1} \frac{||t+1|^p - |t|^p - 1|}{|t|^{p-1} + |t|} < \infty,$$

but this holds trivially.

2. We have

$$||f_n|^p - |f_n - f|^p - |f|^p| \leq C (|f_n - f|^p |f| + |f_n - f| |f|^{p-1}).$$

By the previous exercise, we have $|f_n - f| \xrightarrow{n \rightarrow \infty} 0$ weakly in L^p and $|f_n - f|^{p-1} \xrightarrow{n \rightarrow \infty} 0$ weakly in $L^{p'}$, which shows that

$$\int_{\Omega} ||f_n|^p - |f_n - f|^p - |f|^p| dx \leq C \int_{\Omega} (|f_n - f|^p |f| + |f_n - f| |f|^{p-1}) dx \xrightarrow{n \rightarrow \infty} 0.$$

The identity follows.

Indeed, the previous question shows that

$$\int_{\Omega} |f_n - f|^p dx = - \int_{\Omega} |f_n|^p dx + \int_{\Omega} (|f_n|^p - |f_n - f|^p) dx \xrightarrow{n \rightarrow \infty} - \|f\|_{L^p(\Omega)}^p + \int_{\Omega} |f|^p dx = 0.$$